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ABSTRACT

A spectrally resolved Rayleigh/Mie scattering diagnostic was

developed to measure temperature and wing-spanwise velocity in

the vicinity of an ASTOVL aircraft model in the Lewis 9x15 Low

Speed Wind Tunnel. The spectrum of argon-ion laser light

scattered by the air molecules and particles in the flow was

resolved with a Fabry-Perot interferometer. Temperature was

extracted from the spectral width of the Rayleigh scattering

component, and spanwise gas velocity from the gross spectral

shift. Nozzle temperature approached 800 K, and the velocity

component approached 30 m/s. The measurement uncertainty was

about 5% for the gas temperature, and about 10 m/s for the

velocity. The large difference in the spectral width of the Mie

scattering from particles and the Rayleigh scattering from gas

molecules allowed the gas temperature to be measured in flow

containing both naturally occurring dust and LDV seed (both were

present).

INTRODUCTION

Nonintrusive, quantitative techniques for measuring gas

parameters are needed for use in aerospace research facilities to

provide flowfield characteristics. For example, design of high

performance vertical lift aircraft requires knowledge of the

temperature and velocity of the lift-generated flowfield in all

modes of operation, especially near the engine inlets. When such

an aircraft comes into "ground effect" during hover or vertical

landing, the lift jets impinge on the ground plane. This may form a

fountain of hot gases which act on the underfuselage of the aircraft

and recirculate near the aircraft. Depending on conditions, the hot

exhaust gases can be ingested by the engine inlets, causing loss of

efficiency or catastrophic compressor stall.

An extensive Lewis program was conducted to study the

problem of hot gas ingestion for new ASTOVL (advanced short-

takeoff vertical landing) aircraft designs. The 12% scale ASTOVL

aircraft models were equipped with high temperature and high

pressure air supplies to simulate lift nozzles and suction systems to

simulate engine inlets. The model under test for the work reported

in this paper was a lift plus lift-cruise configuration. It was located

in the test section of the Lewis 9x15 Low Speed Wind Tunnel,

which is equipped to provide simulated engine and external flow

conditions.

The system described in this paper was designed to measure the

gas static temperature and the spanwise component of the mean

velocity. This velocity measurement was intended to complement

measurements made with a separate two-component Laser Doppler

Velocimeter (LDV) which measured the other velocity

components (vertical and longitudinal). The technique is based on

the measurement of the spectrum of laser light scattered by both

gas molecules (Rayleigh scattering) and particulates (Mie

scattering). A scanning planar mirror Fabry-Perot interferometer

was used to measure the spectrum. The width of the Rayleigh

scattering component of the spectrum is proportional to the square

root of the gas temperature, and the frequency shift of the Rayleigh

and Mie spectral peaks from the laser frequency is proportional to

one component of the gas and particle velocity. The technique

used for these measurements is based on previous work done to

measure gas parameters in an hydrogen-oxygen rocket exhaust

(Seasholtz et al., 1992; Zupanc and Weiss, 1992).

The optics were placed on a remotely controlled 3D traversing

table. This allowed point measurements to be taken at

approximately 900 locations in a region under the model

encompassing portions of the lift jets, recirculating fountain,

engine inlets, and ground-effect flow. An important objective of

this work was to demonstrate the feasibility of applying Rayleigh

scattering diagnostics in the harsh conditions of a test facility.

The measurements were conducted in two phases. In the first

phase, measurements were made primarily to obtain the gas

temperature in the vicinity of the model. The front aircraft lift

nozzle operated at a pressure ratio of 4.8, with a total temperature

of about 800 K (1000 OF). The two rear nozzles operated at a

pressure ratio of 2.6. The diameter of each nozzle was about 50

ram. The tunnel headwind velocity was at or below 10 m/s (20

knots). For this phase, no artificial seeding was introduced into the

tunnel, and no LDV measurements were made (although

significant levels of natural dust were present).

In the second phase, Fabry-Perot and LDV measurements were



taken simultaneously, with the primary goal being the
measurement of all three mean velocity components. One
micrometer diameter PSL (polystyrene latex) seed was added to
both the nozzle and tunnel flow. To prevent degradation of the
PSL, the nozzles were operated at less than the design temperature
(475 K or 400 OF). So, although temperature data were obtained,
they do not represent the design condition temperatures, as was
the case for the first phase of measurements.

k, __o

Figure 1. Scattering diagram; ko is the incident wave
vector, _., is the scattered wave vector, Z, is the scattering

angle, and P is the mean particle velocity. Measured is the
projection of _ along K.

THEORY
For the Fabry-Perot interferometer based temperature and

velocity measurements, a single laser beam is focused at the
measurement location (probe volume). Light scattered from gas
molecules and particles in the probe volume is collected and its
spectrum is measured with the interferometer. The spectrum of
the scattered light is broadened by the Doppler shift of the light
scattered from the moving gas molecules and particles. For a
particle moving with velocity _, the Doppler shift is given by

fo = -- (l)
2zc

where K,--.k,,-ko isthewave vectorassociatedwiththescattering,

fCoisthewave vectoroftheincidentlaserlight,and /_,isthe

wave vectorofthescatteredlight(FigureI).

Forscatteringfromparticlesthatareallmoving withthemean

gas velocity,thisexpressionrepresentstherelationbetweenthe

measuredDopplershiftand one component(thecomponentalong
/_)ofthegas velocity.For example,using476 nm laserlight

with near-backscattergeometry,the Dopplershiftwillbe 4.2
MHz/m/s.

The lightscatteredby thegas moleculesislikewiseDoppler-

shifted.For a Io_¢densitygas with a Maxwellian velocity
distr/butionand wherethemolecularvelocit/esareuncorrelated,

thespectrumisa simpleGaussian.The widthoftheGaussianis

simplyrelatedtothegastemperatureby A3_FWHM) = 0.265Ka
Hz (Seasholtzetal,1992),where a = (21¢T/m)I/2isthemost

probablemolecularspeed(r isBoltzman'sconstantandm isthe

molecularmass).The conditionforthislow densitylimittobe

validisthatthemean-free-pathofthegas moleculesbe much

greaterthantheinteractionwavelengthA = 2w'K.Thiscondition

is usually expressed as the non-dimensional parameter y = p/(rIKa)
<< 1, where p is the gas pressure and rl is the shear viscosity.

However, for the air properties and the optical geometry used in
this work, y is on the order of one, and the spectrum cannot be
represented by the simple Gaussian. For y values on the order of
or larger than one, a more complex spectral model must be used.
We used the $6 model developed by Tenti (1974). The FLUID
program (Fessler, 1977) was used to calculate the air properties,
and the ratio of the shear viscosity to bulk viscosity (required by
the $6 model) was assumed to be that of nitrogen at 293 K (given
as 1.367 by Boley et al, 1972).

SPECTRAL ANALYSIS USING A FABRY-PEROT
INTERFEROMETER

The Fabry-Perot interferometer (Figure 2) is essentially a comb
frequency filter whose transmittance depends on the frequency of
the incident light, the refractive index # of the cavity medium, and
the mirror separation d. The free spectral range (FSR) is defined
as the frequency range between transmittance peaks in the comb
filter. The interferometer can be scanned through one FSR by
changing the plate spacing by _2 (the phase changes by 27t).

Consider a monochromatic distributed source on the

interferometer axis. If the light is allowed to pass through the
cavity and is focused with the fringe-forming lens, the image in the
focal plane is a ser/es of concentric bright ring fringes, given by
the Fabry-Perot transmission function

1

lt(_) = l+Fsin2(v/2) (2)

with _ being the phase delay of the light for one pass through the
interferometer given by

4ftladfeosO
= (3)

C

and F = (2N/g) 2 where N is the interferometer finesse (Vaughan,

1989). Herefis the optical frequency and c is the velocity of light
in free space.

To use the Fabry-Perot interferometer in a scanning mode, a

small aperture is located in the focal plane of the fringe-forming
lens. Scanning is achieved by varying d at a constant rate through
at least one order (FSR) and recording the transmitted light as a
function of time. The instrument function is determined by
recording the light transmitted through the aperture from a
monochromatic source having the same spatial distribution as the
scattering source being investigated (Vaughan, 1989).

The measured spectrum Sm consists of the convolution of the
actual spectrum (including the Rayleigh/Mie spectrum and the
extraneous light at the laser frequency) and the instrument function
(Wilksch, 1985). Also included is a broadband term representing
background illumination and photomultiplier tube dark current.
This canbeexpressed as

Sin(f"d) = I[G_SR(f')+G,S,(f')]I(f"d -f')df"

+ Gwl(f"d)+ B (4)
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Figure 2. Planar Fabry-Perot interferometer. (xd Yd) is the
image point, d is the mirror spacing, 0 angle of optical ray
and optical axis, L1is the collimating lens, and 1.2 the fringe
forming lens.

where if=f-fo is the relative frequency shift from the laser
frequency fo, and f_ = fo(1-d]do) is a scanning parameter
related to the physical cavity spacing d. Here GR and SR(f') are
the total scattered power and spectrum of the Rayleigh scattered

light; Gp and Stiff') are the total scattered power and spectrum
of the Mie scattered light (from particles); Gw is the power of
elastically scattered light at the laser frequency from surfaces and
wails; B is the broadband background, which includes
photomultiplier dark current; and l(f_) is the Fabry-Perot
instrument function.

FACILITY DESCRIPTION

The system was deployed in the Lewis Research Center 9x15
Low Speed Wind Tunnel. The test section was 2.7 x 4.6 x 6.1 m
(9 x 15 x 20 ft.) and had lateral flow dumps (gaps in the flush
acoustic boxes). To achieve optical access, one side of the tunnel
test section had several rows of the acoustic boxes removed. The

optics for both the LDV and the Fabry-Perot based system were
arranged on a 3D traversing table. The measurement region
spanned a volume under the model 17 cm spanwise (along the
wingspan direction), 150 cm longitudinally, and 15 cm vertically
(starting about 2 cm below the front nozzle exit plane). The model
was suspended in the test section by an integrated support system
which allowed for pitch, yaw, roll, and altitude adjustment, as well
as high-temperature simulated lift nozzles and engine inlet draw.
For the work reported here the model was configured at zero pitch
yaw and roll, and was positioned 66 cm above the ground plane
(measured to the nose). See Figure 3.

The model was equipped with three simulated-lift nozzles,
indicated in Figure 4. Main inlets were positioned near the
fuselage and wing-body joint, while auxiliary inlets (to open
during ground effect) were positioned with a horizontal inlet plane
near the wing leading edge. The model landing gear was removed
for the laser-based tests. The tunnel and nozzle flow consisted of
ambient air (nozzle flow heated by gas heat exchanger).

OPTICAL CONFIGURATION

The components of the optical delivery and receiving system are
shown in Figure 3. The laser was in a remote location

vibrationally isolated from the wind tunnel. The optical power

ASTOVLMOOEI.

__..._ _;;-_ --_ _,_

Figure 3. Optical configuration schematic showing wind
tunnel test section, scale aircraft model, source laser, optical

fibers, reference fiber, traversing table, Fabry-Perot
interferometer, and data acquisition system.

was delivered via silica/silica multimode fiber, core diameter 200

_tm, numerical aperture 0.22, to the test section 140 m away. The
beam was expanded from the polished end of the delivery fiber
into a 150 mm diameter lens pair. The focal lengths of the lenses
were 450 and 2200 mm, giving a magnification factor of about
five. Thus, the probe volume diameter (at working distance 2200
ram) was I mm and the length was about 4 ram. The laser beam
was focused at a point in the region under the aircraft and then
absorbed by a blackened region beyond the section wall to
minimize the amount of non-Rayleigh-scattered laser light entering
the receiving optics.

Scattered fight was collected in near-backscatter mode at a

149.9 ° scattering angle. The receiving optics, a lens pair identical
to the transmitting optics, imaged the probe volume onto a 200
p.m-core collection optical fiber.

In addition, translucent diffusers were mounted on pneumatic
actuators to intercept the expanding power beam and were used
periodically to inject a small amount of laser light directly into the
signal-receiving fiber via the reference fiber (reference signal is
discussed in the data acquisition section). The optics, as shown in
Figure 3, were mounted on a 3D traversing table. The scattered
light was then delivered to the auxiliary control room (some 30 m
away) for conversion and data processing in a vibration-isolated
environment where the Fabry-Perot interferometer, collimating
lenses, pinhole, photomultiplier tube, and data acquisition PC were
located.

For the temperature measurements (first phase of the test), the
argon-ion laser was operated at 488 nm at 2.3 W (higher power
could be achieved but resulted in laser lineshape degradation), with
power at the probe volume of 1 W. For the velocity measurements
(phase two) laser output power was 1.8 W, and 0.7 W was

delivered to the probe volume. Here the laser was operated in
single-line mode at 476.5 rim. The single axial mode operation
needed for spectral measurements was achieved via a temperature-
tuned intracavity etalon. The LDV system used for the other two
velocity component measurements utilized the 488 nm and 514.5
nm lines of a separate argon-ion laser.
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Figure 4. Measurement locations. Note the lift
nozzles at x : 57 cm and at x = 142 cm. Point

samples were taken in the x direction along the
projected planes shown; typically denser in nozzle flow
region and more sparse in the outermost planes.

In the auxiliary control room, the Fabry-Perot interferometer

was set up in a thermal enclosure on a vibration isolation table,
along with collimating and fringe-forming lenses (160 nun focal

langth). The signal beam expanded from the 0.22 NA polished
fiber end into the collimating lens and was passed through the
Fabry-Perot interferometer (15.1 mm plate spacing, 50 mm

aperture, and 90% reflectance) and focusing lens, and then through
a 0.25 mm diameter pinhole to the photomultiplier tube. In
addition, for the velocity measurement phase, a 476.5 nm

wavelength interference filter was used to exclude the LDV
wavelengths.

DATA ACQUISITION

The Fabry-Perot mirror spacing was mechanically scanned
through a ramp waveform via piezoelectric actuators and a high
voltage ramp generator. The scan rate was one per second. The
ramp was chosen such that the interferometer scanned through two
free spectral ranges (or bandpass orders), amounting to about 20
GHz. The photomultiplier tube was used in photon-counting
mode, with counts accumulating in fixed time intervals during the
scan. The counts from each interval were transferred from the

photon counter to the computer via a parallel interface and stored
in 100-bin histograms. Each scan was stored as a separate
histogram.

Groups of 20 scans were taken, with scans 1-3 and 18-20 being
reference scans of the unshifted laser light, and scans 5-16 being
data scans of light scattered from the probe volume (scans 4 and 17
were not used because the system was automatically switched
between the reference and data signals at these times). Typically
three sets of 20 scans were taken at each spatial location of the

traversing table, for a total acquisition time per location of about
70 seconds. Figure 5 shows sample reference and data spectra.
The reference fiber mentioned earlier serves the purpose of
injecting unshifted laser light directly into the data acquisition
system for the first three and last three interferometer scans of the
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Figure 5. Spectra acquired by the Fabry-Perot
interferometer: a) measured instrument function; (b) a
Mie-dominated seeded-flow spectrum; and (c) a high
temperature Rayleigh-dominated spectrum in unseeded
flow.

20-scan data point.

DATA PROCESSING

The following steps were used to process the spectral data.
Obtained were estimates of the gas temperature and velocity



component along the viewing direction.
1) The 20 scans in each group were combined to form three

spectra: a reference spectrum at the beginning of the group (from
scans I-3), a reference spectrum at the end of the group (scans 18-
20), and the data spectrum from scans 5-16.

2) A 4-parameter least squares fitting procedure (Beck and
Arnold, 1977) was applied to each of the two reference spectra to
obtain the peak position of the unshifted laser light, the free
spectral range, and the finesse of the interferometer. The

determination of these parameters at the beginning and end of the
group allowed detection of changes in the unshifted laser
frequency and FSR that might have occurred during the data
acquisition.

Change greater than a predetermined amount was cause for
rejection of the data group. The averages of these initial and final
values of peak position, finesse, and FSR were calculated for use
in the next step. These parameters were also used to calculate the
instrument function of the intefferometer.

3) A 6-parameter least squares fit was then applied to the data
spectrum. The model of the measured spectrum used (equation 4)
was the convolution of a model of the spectrum of the collected
light and the instrument function of the interferometer (obtained in
step 2). Poisson statistics were used for the noise model. The
spectrum model included: the Rayleigh scattered light, where the

spectral shape was obtained using the Tenti $6 model (Tenti,
1974); the light scattered from particles; and a constant broadband
signal.

The mean velocity of the gas and particles was assumed to be

equal, and the extraneous light at the laser frequency, Gw was
assumed to be negligible. Finally, a broadening parameter was
included to account for turbulence and for jitter in the
interferometer that might have occurred during the data
acquisition. In the absence of jitter, this parameter could be used
to determine turbulence intensity.

This procedure gives estimates of the parameters of interest -
the gas temperature and the velocity component along /C.
Estimates of the uncertainty in these parameters caused by the
photon-statistical noise are also obtained. Figure 5 shows the fit
for two cases, as well as the instrument function (5a). Figure 5b
was obtained at a location with a relatively large particle number
density, and Figure 5c was obtained while the probe volume was in
the nozzle flow, where the spectrum is primarily of Rayleigh
scattered light.

MEASUREMENT UNCERTAINTY

The photon statistical shot noise mentioned in the data
processing section results in a fundamental lower bound on the
measurement uncertainty. These uncertainties were obtained from
the least squares parameter estimation procedure. In general, other
factors will increase the measurement uncertainty. One important
factor is the physical stability of the Fabry-Perot interferometer
during data acquisition. Thermal changes, vibration, and lack of
exact repeatability in the scanning can cause variation in the
unshifted laser frequency location in the recorded spectrum and in
the finesse. This results in an uncertainty in the velocity
measurement, which is based on the frequency shift of the

scattered light from the laser frequency. The error in velocity
caused by an error in the unshifted laser frequency fois seen from
equation (1) tO be

97r

8V = -_- S fo (5)

Setsofreferencespectrawere takenatvariousoccasionsduring

thetest.Analysisof some ofthesespectrashowed a typicalrms

variationinfo ofabout20 to40 MHz, which correspondstoa

velocityuncertaintyof 5 to I0 m/s.Becausethe _/fo-induced

uncertaintywas significantlygreaterthantheshot-noise-induced

uncertainty(2-3metersper second)italone was used as the

velocityuncertainty.

Anotherpotentialerrorsourceistherandom rateofarrivalof
theparticlespassingthroughtheprobevolume.Errorsoccurwhen

thenumberofparticlesintheprobevolumeisontheorderofone,

which can causea falseindicationof the particlesignalpeak

locationinthespectrum.For thistest,however,thenumber of

particlesintheprobevolumeatanygiventimewas generallylarge

(particularlywhen theflowwas seeded),and itisbelievedthatthis

errorisnotsignificant.Only inthenozzleflowwas theparticle

number densitylow and,again,no significanterrorshouldoccur

becausethevelocityisobtainedfromtherelativelylargeRayleigh

peakwhichexistsinthisregion.

We believethattherelativelylargeestimateduncertaintyinthe

temperaturemeasurementsdue toshotnoise(typicallyabout5%)

was largerthanotherpotentialerrorsources.The shiftinfowhich

was an importantfactorinthevelocitymeasurementuncertainty,

shouldnotaffectthetemperaturemeasurementbecauseonlythe

spectralwidth (not the spectralposition)entersinto the

temperaturecalculation.Insummary,theshot-noiseuncertainty

calculatedfrom the parameterestimationwas used as the

temperaturemeasurementuncertainty(about5%),whilethe _fo-

induceduncertainty(aboutI0 m/s) was used as the velocity

uncertainty.

RESULTS

Some preliminary data are presented to illustrate the technique.
The data shown represent a fraction of the total data sets taken,
which number about 2500 spectra.
Figure 6 shows Rayleigh temperature data for several longitudinal
(along the long axis of the aircraft) scans of the traversing table,

and Figure 7 shows velocity data. The velocity measurements
showed that the spanwise component was generally quite small.
This was expected because the flow was primarily along the tunnel
axis in the regions where measurements were made, whereas the
measurement direction was spanwise. Limitations in optical
access prevented measurements from being taken near the ground
plane where the spanwise component was assumed to have been
large. Also, no measurements were taken at locations where the
laser beam terminated on the model body.

The first phase measurements show the elevated temperatures in
the nozzle flow. Note that the front nozzle data indicate higher
temperatures than the rear nozzle data for the y plane of 10 cm. In
addition, there is a general increase in temperature toward the rear
of the model (increasing x).

Assuming fully expanded isentropic flow, the exit-plane
temperature for the front nozzle (pressure ratio 4.8) can be
calculated to be 520 K. This is in good agreement with the
temperature peaks shown in Figure 6 which correspond to spatial
locations directly under the front nozzle.
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z = -8 and -25 cm (measured vertically from model nose).

CONCLUDING REMARKS

The systemdescribedin thispaper demonstratedthe viability of

using Rayleigh scattering to measure gas temperature in flows that
contain significant concentrations of micrometer size panicles.
This was due to the large difference in spectral width of the Mie

and Rayleigh scattering peaks which allowed temperature
information to be extracted from the combined spectrum. The

uncertainty in the gas temperatures was about 5%.
The system also was able to measure the line-of-sight mean

velocity component with about 10 m/s uncertainty. Note that the
uncertainty is independent of the velocity, and thus would give
much smaller relative errors for higher speed flows. In addition,
better thermal and vibration control of the Fabry-Perot
interferometer should reduce this error to the shot noise limit of 2-

3 rrds. It is worth mentioning that we found fiber optic
transmission of the laser light to be a very effective method of
isolating both the source laser and the intefferometer from the
noisy wind tunnel environment.

ACKNOWLEDGMENTS

We would llke to thank Barbara Faker, AI Johns, and George
Neiner for tic opportunity to take data in the wind runnel facility.
We would like to acknowledge all those whose assistance was
invaluable: Andrew Kremer, Martin Krupar, Gary Podboy, Vic
Canacci, Wendy Grosset, and the entire 9 x 15 crew. We also
wish to thank Prof. G. Tentl for kindly providing us with the

computer program for calculating the $6 model spectrum.

REFERENCES

Beck, J.V., and Arnold, K.J., 1977, Parameter Eztimation in

Engineering and Science, John Wiley & Sons, New York, pp. 259-
269.

Boley, C.D., Desai, R.C., and Tend, G., 1972, "Kinetic models
and BriUouin Scattering in a Molecular Gas", Can. J. Phys., voi.
50, pp. 2158-2173.

Fessler, T.E., 1977, "FLUID: A Numerical Interpolation
ProcedureforObtaining Thermodynam/c andTransportProperties
ofFluids,"NASA TM X-3572.

Seasholtz,R.G.,Zupanc,FJ.,Schneider,SJ.,1992,"Spectrally

ResolvedRayleighScatteringDiagnosticforHydrogen-Oxygen

RocketPlume Studies,"AIAA JournalofPropulsionand Power,

Vol.8,No.5,Sept.-Oct.1992,pp.935-942.

Tend,G.,Boley,C.C.,and Desia,R.C, 1974,"On theKinetic

Model Descriptionof Rayleigh-BrillouinScatteringfrom

MolecularGases,"Can.J.Phys,52,pp.285-290.

Vaughan,J.M.,1989,The Fabry-PerotInterferometer:History,

Theory,Practice,and Applications,Adam Hilger,Bristol,1989,

Chapter 3.
Wilksch, P. A., 1985, "Instrument function of the Fabry-Perot

spectrometer", App. Op., V24, No. I0, 15 May 1985. pp. 1502-
1511.

Zupanc,FJ. and Weiss,J.M.,1993,"RocketPlume Flowfield

CharacterizationUsing LaserRayleighScattering",28thJoint

PropulaionConference,July6-8,1992,Nashville,"IN,AIAA

paper92-335I.

6



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
PuOticreportingburden for this ¢oflecllonof bflomuitloois estimated,to average 1 I_.r pet respond..0 includingthe time for rev'._win_ir_tru_,lofts, .lmawc.hing exi_'mg da=aI_a .r_..,
gatheringand maintainingthe data needed, and cor_leling _ reviewingthe collect,onol information. Send co.rnmp,nts r.egaro/ngmls.oul_l_me.=imate or a,"ty=olner_51_fl ol mls

Davis Highway, Suite 1204. Arllnglon, VA 22202-43(_ and to the r,.mlceof Management and Budget,Pape_ork Heouct_n P'rolect(u/u4-u]u_), was mgron,

1. AGENCY USE ONLY (Leave blank) 2. RIEPORTDATE 3. REPORT TYPE AND DATES COVERED

July 1995

4. TITLE AND SUBTITLE

Fabry-Perot Interferometer Measurement of Static Temperature

and Velocity for ASTOVL Model Tests

6. AUTHOR(S)

Helen E. Kourous and Richard G. Seasholtz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORINGR_IONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

Technical Memorandum

5. FUNDINGNUMBERS

WU-505--62-50

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9799

10. SPONSORING_MONITORING
AGENCY REPORT NUMBER

NASA TM- 107014

11. SUPPLEMENTARY NOTES

Prepared for the Symposium on Laser Anemometry: Advances and Applications sponsored by the American Society of
Mechanical Engineers, Lake Tahoe, Nevada, June 19-23, 1994. Responsible person, Richard G. Scasholtz, organization

code 2520, (216) 433-3754.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTPJBUTION CODE

Unclassified - Unlimited

Subject Category 35

This publication is available from the NASA Center for AeTospacc Information, (301) 621--0390.

13. ABSTRACT (Maximum 200 words)

A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise

velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The specmam of

argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferom-

eter. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity

from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The
measurement uncertainty was about 5% for the gas temperature, and about 10 m/s for the velocity. The large difference in

the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas

temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were presen0.

14. SUBJECT TERMS

Fabry-Perot interferometers; Laser anemometers; Short takeoff aircraft;
Wind tunnel tests

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIRCATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIRCATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

8

16. PRICE CODE

A02

20. UMITATION OF ABSYFIACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102




